skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chen, Hsin-liang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Abstract Producing findable, accessible, interoperable and reusable (FAIR) data cannot be accomplished solely by data curators in all disciplines. In biology, we have shown that phenotypic data curation is not only costly, but it is burdened with inter-curator variation. We intend to propose a software platform that would enable all data producers, including authors of scientific publications, to produce ontologized data at the time of publication. Working toward this goal, we need to identify ontology construction methods that are preferred by end users. Here, we employ two usability studies to evaluate effectiveness, efficiency and user satisfaction with a set of four methods that allow an end user to add terms and their relations to an ontology. Thirty-three participants took part in a controlled experiment where they evaluated the four methods (Quick Form, Wizard, WebProtégé and Wikidata) after watching demonstration videos and completing a hands-on task. Another think-aloud study was conducted with three professional botanists. The efficiency effectiveness and user confidence in the methods are clearly revealed through statistical and content analyses of participants’ comments. Quick Form, Wizard and WebProtégé offer distinct strengths that would benefit our author-driven FAIR data generation system. Features preferred by the participants will guide the design of future iterations. 
    more » « less
  2. Phenotypes are used for a multitude of purposes such as defining species, reconstructing phylogenies, diagnosing diseases or improving crop and animal productivity, but most of this phenotypic data is published in free-text narratives that are not computable. This means that the complex relationship between the genome, the environment and phenotypes is largely inaccessible to analysis and important questions related to the evolution of organisms, their diseases or their response to climate change cannot be fully addressed. It takes great effort to manually convert free-text narratives to a computable format before they can be used in large-scale analyses. We argue that this manual curation approach is not a sustainable solution to produce computable phenotypic data for three reasons: 1) it does not scale to all of biodiversity; 2) it does not stop the publication of free-text phenotypes that will continue to need manual curation in the future and, most importantly, 3) It does not solve the problem of inter-curator variation (curators interpret/convert a phenotype differently from each other). Our empirical studies have shown that inter-curator variation is as high as 40% even within a single project. With this level of variation, it is difficult to imagine that data integrated from multiple curation projects can be of high quality. The key causes of this variation have been identified as semantic vagueness in original phenotype descriptions and difficulties in using standardised vocabularies (ontologies). We argue that the authors describing phenotypes are the key to the solution. Given the right tools and appropriate attribution, the authors should be in charge of developing a project’s semantics and ontology. This will speed up ontology development and improve the semantic clarity of phenotype descriptions from the moment of publication. A proof of concept project on this idea was funded by NSF ABI in July 2017. We seek readers input or critique of the proposed approaches to help achieve community-based computable phenotype data production in the near future. Results from this project will be accessible through https://biosemantics.github.io/author-driven-production. 
    more » « less